Introduction to Java
Notes Packet #3

Name:

Objective: By the completion of this packet, students should be able to write loops.

The Modulus Operator. The modulus operator (a.k.a. the remainder operator) is the
percent sign (%). It is used to find the remainder of a division problem. For example:

intx=14%5: I 4
inty =24 %6; Il 0
intz=8% 10; /I 8

In some circumstances, the modulus operator turns out to be very useful. For example, if you
need to know if one number is evenly divisible by another, use this code:
if (num1 % num2==0) /l then numz2 is a factor of num1

Example 1. Suppose a store sells soft pretzels for 50 cents each and $5 for a dozen. The code
below calculates the cost on n pretzels.

int n; Il n represents the number of pretzels being bought
/I code that assigns n a value
double cost=5*(n/12)+0.5* (n % 12);

While LOOpS. A while loop is a control structure that allows you to write code that is
executed repeatedly as long as some condition is true.

Java Code Flowchart
intn=2;
n=2
while(n<=5){ false
System.out.printin(n + “cats");
N+, true
} SOP(ncats)
\ 4
n++
Every pass through the body of a loop is called an iteration

page 1

double money = 1000.0; You have $1,000 and a 10% interest rate. Calculate
int numYears = 0; how many years must pass until your money has
reached (or surpassed) some goal

Scanner get = new Scanner(System.in);

System.out.print("Enter your goal: "); money = 1,000; numY'rs = 0;
double goal = get.nextDouble(); ¢

while (money < goal) { get $ goal
double interest = 0.1*money; from user
money += interest; v
numYears++; 5 money < goal
}

System.out.printin(numYears + " years ");

. 0 > calculate interest
System.out.printin(money + " dollars *);

increase money
numyYrs++

v

display numYears
and money

There are two basic types of while loops: task/event-oriented and count-oriented.

Task/Event-Oriented While Loop. This kind of loop continues until some task is completed or

some event occurs. For example:

Scanner read = new Scanner(System.in);

int num = 0;
int count = 0;
int total = 0; Keep looping while num is not negative.
while (num>=0){ .
System.out.print("Enter a number "); As long as num is not
infu(rr:"jnr]efﬁ.ge)x‘t{lnt(); negative, add the number to
total = total + num: the total and increase count
count++; by 1.
}
}

System.out.printin("The " + count + " numbers add up to " + total) ;

I the user enters 3, 5, and -2, what is displayed? __ The 2 numbers add up to 8

page 2

Count-Oriented While Loop. This kind of loop continues for a specific number of
iterations and then stops. For example:

intn=1;

n is a “counter” because it keeps count of the iterations.

while (n<=5){ Keep looping while this is true

System.out.printin("Hello");

Body of the loop

N+ The last statement changes the counter

}

A count-oriented loop may count forward or backward. It may count in steps of 1 or any other

value.

For Loops. A for-loop is typically used as an alternative to a count-oriented while loop.

The first statement in a for-loop contains three statements separated by semicolons:
1. Initialize, and usually declare, the counter (which is usually an int).

o Boolean expression involving the counter; keep looping while true.

3. Update the counter. This is executed at the end of each iteration.

Java Code Flowchart
. n=1
for(intn=1;n<4;n++){
h f the |
/I the body of the loop false
}
true
body
n++

Example 2. What does this loop display?
5’ 6’ 7’ 8!

for (intk = 5; k <= 8; k++){
System.out.print(k + ", ");

Example 3. What does this loop display?
25, 18, 11,

for (intn=25n>=10;n=n-7){
System.out.print(n+",");

page 3

