
page 1

Introduction to Java
Unit 3. Programs

Start a new project for this unit.

Programs 1 to 4 require you to use the mod, %, operator.

1. Let the user enter an integer. Your program should then say whether the number is:
 positive, negative, or zero
 even or odd
 a multiple of 3 or not

Below are two examples of how the program should run.

2. You sell balloons for $2 but $9 for a pack of five. Write a program where the user enters
the number of balloons and the program prints the total cost. Solve this without using an if
statement.

Below are two examples of how the program should run.

3. Write a program that generates a random integer between 10 (inclusive) and 1,000
(inclusive). This represents a random number of seconds. Then convert the seconds into
minutes and seconds. Here are some sample outputs:
 271 seconds = 4 minutes and 31 seconds
 46 seconds = 0 minutes and 46 seconds
 780 seconds = 13 minutes and 0 seconds
Solve this without using an if statement.

page 2

4. Write a program where the user enters a particular year and the program either says “This
is a leap year” or it says “This is not a leap year.”

Here are the rules for determining if a year is a leap year or not:

x Any year divisible by 400 is always a leap year.
x Any year divisible by 100 is not a leap year (unless it is also divisible by 400).
x Any year divisible by 4 is a leap year (unless it is also divisible by 100 and not 400)
x All other years are not leap years.

For example: 1900 and 1901 were not leap years; 2000 and 2004 were leap years.

Programs 5 to 9 involve the use of while loops.

5. Write a program where the user enters a number between 1 and 10 and the program
displays all the integers from that number up to and including 20.

Below are two examples of how the program should run.

6. Write a program that displays random integers between 3 (inclusive) and 8 (inclusive).
The program should stop after the sum of the random numbers is 17 or greater. Create one
variable for the random number and a second variable to hold the sum. After generating the
random number, add it to the sum.

Below are two examples of how the program should run.

page 3

7. In this program we will build a better version of 21 than we did in Unit 2. The player can
take as many cards as they want. The dealer
will keep taking cards until their total is 17 or
greater. To the right are some sample runs.

As a reminder, the rules of the game are:
 The player and dealer are both trying to
get as close to 21 as possible without going
over.
 The player goes first and keeps taking
cards until they decide to stop. In our initial
version of the game the player can take as many
cards as they want. You should fix this so that
they cannot take anymore cards once they get to
21 or more.
 The dealer keeps taking cards until they
have 17 or more. You should fix this so that the
dealer does not take any cards if the player has
gone over 21 (“busted”).

The winner is decided as follows:

x If the player goes over 21, they lose
x If the player has 21 or less and the dealer

has more than 21, player wins
x If the player and dealer both have 21 or less, the one with the higher total wins
x It is a tie if both players have 21 or less and have the same totals.

Here is the beginning of the program where the player gets their cards.

Scanner input = new Scanner(System.in);
int card1 = (int)(10*Math.random()) + 1;
int card2 = (int)(10*Math.random()) + 1;
int player = card1 + card2;
System.out.println("You have " + card1 + " and " + card2 + " for " + player);
System.out.print("Enter 1 for another card, any other number to stay. ");
int response = input.nextInt();
while (response == 1){
 int another_card = (int)(10*Math.random()) + 1;
 player += another_card;
 System.out.println("You got a " + another_card + " for a total of " + player);
 System.out.print("Enter 1 for another card, any other number to stay. ");
 response = input.nextInt();
}

You write the code for the dealer and to figure out who won or lost. You should also fix the
above code so that the player cannot keep taking cards forever.

page 4

8. Write a program that projects how a
person’s money will grow over 10 years.
Use the flowchart to the right. Below is an
examples of how the program should run if
the user enters 1000 and 0.1 (10%).

9. Write a program where the user has to guess a
secret number (between 1 and 100). If the guess is
wrong, the program says if the guess was too high or too
low. After correctly guessing the number, the program
says how many guesses it took.

While writing the code you may want to print out the
secret random number so that you can verify that
program is working correctly. Then at the end you
remove that print statement.

To the right is an example of how it should run.

Year = 1

Increase $ by the
interest earned.

Year++

User enters $ and
interest rate.

Print year and $

Year <= 10

True

False Done

page 5

Problems 10 to 14 should use for loops.

10. Write a program where the user enters two integers, n1 and n2, and the program prints
out all the numbers from n1 to n2 (inclusive). Assume the user enters a smaller number followed
by a larger number. Use a for-loop

Here are some sample runs.

11. The user enters a number between 1 and 11 and the program prints the first twelve
multiples of the number. You must use a for loop.

Here are two examples.

12. Write a program that displays the results shown to the right.

Your program should:

- Use a for loop
- Use Math.pow
- Use (int) to cast the value returned by Math.pow to an int.

Your code inside the main method should be about four lines long.

page 6

13. Write a program where the user enters a number and the program displays all the factors
of that number. You must use a for-loop.

Below are two sample outputs.

14. The user enters a distance (in
miles) and the program displays how
long it will take to travel there if the
driver maintains an average speed of 25,
30, 35, .. 70 miles per hour.

See the figure to the right for a sample
output.

This problem tends to harder than it
looks.

Suggestion: Calculate the time in
minutes and cast the result to an integer.
Then convert the minutes into hours and
minutes.

f = 1

f++

Print f

f <= n?

True

False

Does f
divide evenly

into n?

True

False

Done

page 7

For the remaining problems, you decide what kind of loop to use.

15. Write a program the prints out the perimeter and area of a square for sides of 5, 7, 9, 11,
and 13. Use a loop. Your output should look something like this.

16. Write a program where the user enters a positive integer and the program adds up the
digits in the number. Here are two examples.

Hint. Suppose the user enters 835. Notice that
 835% 10 equals 5 and 835 / 10 equals 83
 83 % 10 equals 3 and 83 / 10 equals 8
 8 % 10 equals 8 and 8 / 10 equals 0

Yes, you need a number. And remember when testing, don’t put in a number greater than
2,147,483,647 or your program goes Boom (metaphorically speaking).

17. Write a program where the user enters a numerator and a denominator and the program
reduces the fraction (if possible). Here are some sample runs.

Hint: Write a loop that looks for the largest number that divides evenly into both the numerator
and the denominator. Afterward the loop if the largest common factor is one, then you know the
fraction could not be reduced. Otherwise you found the greatest common factor and you can
reduce the fraction.

