

Introduction to Java

Programs for Packet #4: Classes and Objects

Note. All of these programs involve writing and using more than one class file.

1. Copy the Box class and compile it. But you

won’t be able to run it because it does not have

a main method.

Create a second class file named TestBoxes

which has a main method. In the main method

do the following:

- create a Box object 2 ft wide by 6 ft long

- call the getArea method and display the result

- call the bigger method and double the

dimensions of the box

- call the getPerimeter method and display the

result

public class Box {

 private double len, width;

 public Box(double a, double b) {

 len = a;

 width = b;

 }

 public double getArea() {

 return len * width;

 }

 public double getPerimeter () {

 double p = 2.0*(len + width);

 return p;

 }

 public void bigger(double f){

 len = f * len;

 width = f * width;

 }

}

2. Copy the DiceRunner class and complete

the Dice class. Compile and run.

public class DiceRunner {

 public static void main(String[] args) {

 Dice d = new Dice();

 d.roll();

 int n = d.getTotal();

 System.out.println(n);

 d.roll();

 n = d.getTotal();

 System.out.println(n);

 }

}

public class Dice {

 private int die1, die2;

 public Dice() {

 Give die1 and die2 random values

 }

 public void roll() {

 Assign die1 a random integer value

between 1 and 6. Do the same thing for die2.

 }

 public int getTotal() {

 return the sum of die1 and die2

 }

}

3. Write another class (with a main method) in the same location as the files you created for

Problem 2. In this main method, create a Dice object and roll the dice 100 times (in other words,

call the roll method followed by the getTotal method 100 times). Count how many times you roll

a 7 or 11. Also count how many times you rolled a 2, 3, or 12. Display the results as percents.

For example:

 You rolled a 7 or 11 21% of the time.

 You rolled a 2, 3, or 12 13% of the time.

Note. Take advantage of the fact that you are rolling the dice 100 times to calculate the

percentages.

4. Copy the Circle class and complete the two

methods to the right. getC should return the

circumference of the circle and changeR

should assign the value of the parameter to the

radius.

Write a second class with a main method. In

the main method:

- create a Circle object with a radius of 3.

- call the getC method and display the returned

value (it should be 18.84955592153876)

- call the getArea method and display the

returned value (it should be

28.274333882308138)

- call the changeR method and change the

circle’s radius to 1.

- call the getArea method again and display the

returned value (it should be

3.141592653589793)

public class Circle {

 private double radius;

 public Circle(double r) {

 radius = r;

 }

 public double getArea() {

 double a = Math.PI * radius * radius;

 return a;

 }

 public double getC () {

 it returns the circle’s circumference

 }

 public void changeR(double r) {

 changes the value of radius to r

 }

}

5. Write the Employee class so that when the

main method in RunEmployee is executed,

the following is displayed.

 Salary is 42000.0

 Salary is 42000.0

 Salary is 45000.0

The Employee class has one instance variable

for storing an Employee’s salary.

Notice that the increase method does NOT

change an employee’s salary if the argument

is negative.

public class RunEmployee {

 public static void main(String[] args) {

 Employee e = new Employee(40000.0);

 e.increase(2000.0);

 double p = e.getPay();

 System.out.println("Salary is " + p);

 e.increase(-500.0);

 p = e.getPay();

 System.out.println("Salary is " + p);

 e.increase(3000.0);

 p = e.getPay();

 System.out.println("Salary is " + p);

 }

}

6. Finish the Travel class. Then write a second

class that has a main method. In the main

method:

- Write a loop that iterates 21 times with the

counter going from 6 to 40 in steps of two.

- In the body of the loop, create a Travel object

and call each method. Print the returned values.

- The output should look like this:

people = 6, vans = 1, canoes = 2, planes = 1

people = 8, vans = 1, canoes = 3, planes = 1

people = 10, vans = 2, canoes = 4, planes = 1

people = 12, vans = 2, canoes = 4, planes = 1

people = 14, vans = 2, canoes = 5, planes = 2

...

people = 32, vans = 4, canoes = 11, planes = 3

people = 34, vans = 5, canoes = 12, planes = 3

people = 36, vans = 5, canoes = 12, planes = 3

people = 38, vans = 5, canoes = 13, planes = 4

people = 40, vans = 5, canoes = 14, planes = 4

public class Travel {

 private int people;

 public Travel(int n) {

 people = n;

 }

 public int goByVan(){

 this returns the number of vans

required to transport everyone (8 per van)

 }

 public int goByCanoe(){

 this returns the number of

canoes required (3 per canoe)

 }

 public int goByPlane() {

 this returns the number of

planes required (12 per plane)

 }

}

7. Copy and complete the Cube method.

Write a second file with a main method that

does the following.

- Create a Cube object that has a side of 3.

- Call the volume and surfaceArea methods

and print the results.

- Call the setSideForVolume method and use

125 as the argument.

Call the getSide, and surfaceArea methods and

display the results.

When your code compiles and runs, the

following should print.

The last two answers are not exact because of

floating point errors.

public class Cube{

 private double side;

 public Cube(double s){

 side = s;

 }

 public double volume(){

 return side*side*side;

 }

 public double surfaceArea(){

 returns the cube’s surface area

 }

 public double getSide(){

 return side;

 }

 public void setSideForVolume(double v){

 Change side to a value that

corresponds to a volume of v. For example, if

v is 64 then side should be changed to 4.

 }

}

8. Write a Sphere class (similar to

the Cube class) so that the class to the

right compiles and runs. (SOP is an

abbreviation.)

The output should be something like

this:

The surface area is 50.26548245743669
sq. units
The volume is 33.510321638291124 cu.
units
Half the volume is 16.755160819145562
cu. units

The side is now 1.587 units
The surface area is 31.649271471835966
sq. units
The volume is 16.742464608601225 cu.
units

Notice that some small inaccuracies

creep in when working with doubles.

public class RunSphere {
 public static void main(String[] args) {
 Sphere x = new Sphere(2);
 double vol = x.volume();
 double sa = x.surfaceArea();
 SOP("The surface area is " + sa + " sq. units");
 SOP("The volume is " + vol + " cu. units");
 SOP("Half the volume is " + vol/2 + " cu. units");
 SOP();
 x.setRadiusForVolume(vol/2);
 double s = x.getRadius();
 vol = x.volume();
 sa = x.surfaceArea();
 SOP("The side is now " + s + " units");
 SOP("The surface area is " + sa + " sq. units");
 SOP("The volume is " + vol + " cu. units");
 }
}

9. Modify the Cube class by adding another method, named setSideForSA, which changes the

side based on a given surface area. Modify the Sphere class by adding a method,

setRadiusForSA, which changes the radius based on a given surface area. These methods are

similar to the setSideForVolume and setRadiusForVolume methods.

Write a another class that has a main method. The first three lines of the main method are:

 Sphere ball = new Sphere(1);

 Cube box = new Cube(1);

 Scanner s = new Scanner(System.in);

 The rest should ask the user to enter a surface area then change the radius of the Sphere to

match that surface area and change the side of the cube to match the surface area. Then call the

volume methods and print the results. When you run the program, if the user enters 25.5, the

results should look like this:

10. Copy the Car class. In another class’s main

method, create two car objects.

Write a while loop where the drive method is

called for each car and their locations are printed.

When a car has gone over 200 miles, the loop

stops and that car is the winner. Here is one sample

output.

Car 1: 4 miles, Car 2: 36 miles.

Car 1: 14 miles, Car 2: 71 miles.

Car 1: 17 miles, Car 2: 75 miles.

Car 1: 21 miles, Car 2: 80 miles.

Car 1: 35 miles, Car 2: 104 miles.

Car 1: 63 miles, Car 2: 115 miles.

Car 1: 91 miles, Car 2: 122 miles.

Car 1: 123 miles, Car 2: 154 miles.

Car 1: 156 miles, Car 2: 178 miles.

Car 1: 167 miles, Car 2: 217 miles.

Car 2 wins

But obviously sometimes car 1 will win and there

could even be a tie.

public class Car {

 private int x; // location of the car

 public Car() {

 x = 0;

 public int getX(){

 return x;

 }

 public void drive() {

 x= x + (int)(40 * Math.random());

 }

}

11. First complete the Number class. Then we

play the guessing game. Each turn the user gets to

ask if the secret number is a multiple of some

number and then they get to guess the number.

Here's a rough outline.

public class Runner {

 public static void main(String[] args) {

 create a Scanner object

 create a Number object

 boolean keepPlaying = true;

 int count = 0;

 while (keepPlaying) {

 count++;

 Ask the user to enter a positive integer.

Get response and call the multipleOf method.

Print a message that indicates if the secret number

is a multiple of that input or not

 Ask the user to guess what the secret

number is. Call the guess method. If the user’s

right then print Congratulations, print count, and

set keepPlaying to false (to get out of the loop). If

the user is wrong, then indicate that.

 }

}

public class Number {

 private int num;

 public Number() {

 num = (int)(100*Math.random())+1;

 }

 public boolean multipleOf(int x){

 returns true if num is a multiple of x

 }

 public boolean guess(int x) {

 returns true if num equals x;

otherwise it returns false

 }

}

The following program uses the String class to hold a person’s name. We will do a lot of work

with the String class in the next packet. This is just a preview.

12. First, complete the play method.

In another class’s main method, create two

Game objects which each start with 25

tokens. Then keep calling the play method

until one of the Game objects run out of

tokens.

After the loop call the status method for

each Game object.

The main method should only be about 8

lines long.

Note. Over time a player is just as likely to

win tokens as to lose tokens so it may take

a while before one player loses all their

tokens.

Sample output.

Paul has a 6 and a 2 Lose 1

Mr. Sawyer has a 4 and a 4 WIN 1

Paul has a 1 and a 6 WIN 2

Mr. Sawyer has a 3 and a 3 WIN 1

....

Paul has a 2 and a 4 Lose 1

Mr. Sawyer has a 2 and a 4 Lose 1

Paul has a 3 and a 1 Lose 1

Mr. Sawyer has a 1 and a 2 Lose 1

Paul has 0 tokens

Mr. Sawyer has 22 tokens

public class Game{

 private int tokens;

 private String name;

 public Game(int t, String s){

 tokens = t;

 name = s;

 }

 public void play(){

 If the number of tokens is zero or less, then

exit the method immediately

 Generate two random numbers, n1 and n2,

between 1 and 6. Then display them like this:

 SOP*(name+" has a "+n1+" and a "+n2);

If the numbers add up to 7, increase the number of

tokens by 2 and print WIN 2.

If the numbers are the same, increase the number

of tokens by 1 and print WIN 1.

Otherwise decrease the number of tokens by 1 and

print LOSE 1.

 }

 public int tokens() {

 return tokens;

 }

 public void status(){

 SOP*(name+" has "+tokens+" tokens");

 }

}

* you need to type System.out.print or println

