## Java Arithmetic - First understand integer division (assumed by Java)

## some examples of integer division

- $10 / 2$ is $5 \quad 2 \& 10$ are stored as 32 bit ( 4 byte) int datatypes
- $10 / 3$ is 3 so... java does 32 bit operations, resulting in 32 bit results
. $10 / 4$ is 2 the answer to integer division is the whole number answer
. $4 / 10$ is 0 only, the quotient in a long division problem.


## now double division

- 10.0/2 5.0 this is normal math type division.
. $10.0 / 33.333333$
. $10 / 4.02 .5$
. 10.0/5.0 2.0


## Casting

To change one data type to another put the new type in parenthesis in front of the type you want to change, as follows:
int $\mathrm{n}=6$;
double $\mathrm{d}=($ double $) \mathrm{n} ; \quad / /($ double $) \mathrm{n}$ turns n into 6.0
//however this would happen anyway as 32 bits
// can be moved into 64 bits

10/4 evaluates to 2 because of integer division
but (double) $10 / 4$ evaluates to $2.510 /($ double) 4 also evaluates to 2.5

## BUT BE CAREFUL OF ORDER OF OPERATIONS

Casting comes before all operations EXCEPT () grouping
(double)(10/4) evaluates to 2.0
bc (10/4) is integer division $-\rightarrow$ then cast to double
int $\mathrm{x}, \mathrm{y}$;
(double)( $\mathrm{x} / \mathrm{y}$ ) will not do the same as (double) $\mathrm{x} / \mathrm{y}$ or $\mathrm{x} /($ double) y

When you cast to an int you lose precision by truncating:
int $\mathrm{n}=$ (int) $10.7 / 5$; // $10 / 5$ yields 2, can be stored into an int 32 bits
int $\mathrm{n}=10.7 / 5 ; \quad / / 64$ bits in either operand is 64 bit division
// so this is an error! cannot stuff 64 bits into 32 bits.
double $\mathrm{m}=(\mathrm{int}) 12.6 / 2 ; \quad / / 12 / 2$ is 6 but stores as 6.0

## ASSIGNMENT PART 1: PRACTICE BY SOLVING

```
Assume int x= 8; int y = 5; int a = 10; int b=3;
int num = 12 / 7;
int num = 3 / 9;
double d= 1 / 2;
int num = 100 / 6.0;
int lol = x / b ;
double d = 100 / 40.0
int num = 0 / 5;
double dd = (double) -4 / 8;
double bitty = 30.0 / 12;
int f= (int)(7.0 / b );
int g = (int) 7.0 / a ;
int g= 7.0 / (int) 3.0;
double g=(double)(10 / 7) ;
int num = a / b;
int btw = y / (double) b ;
```

