
Introduction to Java

Unit 1. Using BlueJ to Write Programs

1. Open up BlueJ. Click

on the Project menu and

select “New Project.”

You should see the

window on the right.

Navigate to wherever

you plan to save your

work. (In this example I

saved to the desktop –

don’t you do that.)

Enter “Unit 1” where it

says Folder name and

then click the Create

button.

2. After you’ve clicked Create

button, the screen to the right

should appear.

If you double-click on the file

icon you’ll see that it’s a Read-

Me file. This can be a useful

way to document each project.

Use it if you want but it is not a

requirement.

3. Click on the New Class

button and window appears.

Enter “First” and click OK.

4. Your screen should look like this:

Double-click on the First icon.

5. Delete everything in the First file. Then type in the following code so that it looks like the

figure to the right. Java is case-sensitive so be careful when typing.

6. Click the Compile button. If the message “Class compiled – no syntax errors” appears (as

shown above, then Great, you got it right. All java programs must successfully compile before

they can be run. If there were errors, fix them.

7. Now go back to the earlier window

and right-click on the First icon and

select “void main(String[] args)”. The

window below will appear.

Do not enter anything into the textbox.

Click the OK button. The window below should appear.

public class First {

 public static void main(String[] args) {

 System.out.println("Hello World");

 }

}

Second Program. Click on

the New Class button. Name

the class Second and click

OK.

Double-click on the

icon labelled Second.

Delete all the existing

code and replace it

with the following.

Click Compile. If

there are errors, fix

them and click

Compile again.

Notice that + has two

different meanings.

In the second line of

the main method it

concatenates the

phrase in quotes with the value of the variable. In the third line + means addition.

Go to the main window. Right-click on the icon labelled Second

and select the main method. Click OK and you should see this

Terminal window. You may also see “Hello World” if you ran

the two programs back to back without clearing the Terminal

window first.

Third Program.
Create a class,

named Third, and

enter this code.

Compile it and run

the program (by

right-clicking the

icon and calling the

main method).

If you enter 4 for the integer and 8.4 for the decimal, your Terminal

window should look like this.

This program shows us how to create a Scanner object. A Scanner

object has methods that allow us to read information into our program. We will cover objects

and methods in great detail starting in Unit 4. Here’s what you need to know for now.

1) If you want the user to enter information into your program, the first line of your program will

be:

 import java.util.Scanner;

This tells the compiler that the program needs to know about the Scanner class and that

information can be found in a package named java.util.

2) To create a Scanner object you will use a statement like this:

 Scanner variable_name = new Scanner(System.in);

The variable name must follow the same rules as we discussed on the first page of the notes (i.e.

start with a letter, etc.)

3) If you want the user to enter an integer, you must call the nextInt method. If you want the

user to enter a decimal, you must call the nextDouble method.

4) When you call nextInt or nextDouble, you must use the variable name of the Scanner object

and the method will be on the right side of an assignment statement. And don’t forget the

parentheses – that’s a signal to the compiler that nextInt and nextDouble are methods.

Fourth Program. In this program the user will enter the length and width of a rectangle and the

program will calculate and display the area and perimeter of the rectangle. Copy the outline

below, fill in the blanks, and get the program to run.

public class Rectangle{

 public static void main(String [] args){

 Scanner sam = new Scanner(System.in);

 System.out.println("Enter the length ");

 int length = sam._____________________

 System.out.println("Enter the width ");

 int width = _______________.nextInt();

 int area = __________________________

 int perimeter = __________________________

 System.out.println("The area is " + area);

 System.out.println("The perimeter is " + perimeter);

 }

}

Here’s what your program should display if the user enters 5 and 11.

Fifth Program. This program will implement the formula for calculating the area of a

trapezoid:

2

)(
* 21 basebase

heightarea

Write a program where the user enters the height and two bases as decimals and the program

calculates and displays the area.

Here’s what your program should display if the user enters 1.6

for the height, 2.1 for base1 and 2.9 for base2.

When should we declare a variable as an int and when should we declare it as a double?

Programs run faster and more accurately with ints. So wherever possible, it is better to use an

int. However, there are circumstances where you must use a double. In this class I will usually

tell you which data type to use. If I don’t, then use common sense. If the variable represents the

number of people in a room – use an int. If the variable represents an interest rate – use a

double. If it is ambiguous then use your best judgment.

In the above paragraph I said that programs run more accurately with ints. Here’s why. All data

are represented as a series of ones and zeros (binary form). Certain decimal values cannot be

represented exactly in binary form and so small “floating point” errors can appear. These types

of errors cannot appear when working with ints. We will not concern ourselves with these errors

but you should be aware that they can occur.

Here’s an example. The output is to the right. The third line, 12.9 is correct but the 7.5 – 2.1

equals 2.1 so the last line is off by 0.0000000000000004. This is obviously a very tiny error but

you should be aware that they can occur.

public class Floating_Point_Error{

 public static void main(String [] args){

 double x = 7.5;

 double y = 5.4;

 System.out.println(x);

 System.out.println(y);

 double z = x + y;

 System.out.println(z);

 z = x - y;

 System.out.println(z);

 }

}

Sixth Program. This program should convert degrees Fahrenheit to degrees Celsius. The

formula is:

 32
9

5

 FC

Fahrenheit should be an integer value but the result is a decimal. And just in case you need it,

here are some test data:

 0 Fahrenheit = -17.7777777778 Celsius

 32 Fahrenheit = 0 Celsius

 212 Fahrenheit = 100 Celsius

Seventh Program. In this program the user enters the number of widgets ordered and the unit

price. The program calculates and displays: the cost of the widgets, the 6% tax on the sale, and

the total cost. Don't worry about rounding off the results to two places. Use an int for the

number of widgets and a double for the unit price.

Here’s what the output should look like if the user

wants to buy 7 lovely widgets at $1.50 each.

Try to figure out how to print a blank line before you

print the results.

Eighth Program. Have the user enter three numbers and store them as doubles. Then display

the sum of the three numbers and the average of the three numbers. Here is an example of how

the program should run.

 Enter a number:

 User enters 5.5

 Enter a second number:

 User enters 6.1

 Enter a third number:

 User enters 4.3

 The sum of those numbers is 15.899999999999999

 The average of those numbers is 5.3

Notice that when working with doubles, small errors can appear. These errors are the

unavoidable results of how decimals are stored in a computer.

Ninth Program. The user enters a number and the program doubles that number three times.

Use an int to store the number. The program should run like this:

Enter a number

 User enters a 3

3 doubled in 6

6 doubled in 12

 12 doubled in 24

